Cardiovascular Biophysics Laboratory

Washington University School of Medicine in St. Louis

 

Cardiovascular Division
Department of Internal Medicine
Program in Cell Biology and Physiology
Department of Biomedical Engineering
Department of Physics

 
Washington University School of Medicine
Home
Research Areas
People
Demo
Publications
Software
Opportunities
Related Web
Contact Us

Publications and Patents

    Patents

    1- US 8,273,029 B2: Pressure Recovery Index to Assess Cardiac Function [Abstract]

    2- US 8,355,548 B2: Load Independent Index of Diastolic Function [Abstract]

    space

    space

    2017

  1. Maksuti E, Carlsson M, Arheden H, Kovács SJ, Broomé M, and Ugander M. "Hydraulic forces contribute to left ventricular diastolic filling". NATURE/Scientific Reports, online 2 March 2017, doi: 10.1038/srep43505.

  2. Kohli K, Kovács SJ. "The Quest for Load-Independent Left Ventricular Chamber Properties: Exploring the Normalized Pressure-Volume Loop." Physiological Reports 29 March 2017, doi: 10.14814/phy2.13160

  3. 2016

  4. Toger J, Kanski M, Arvidsson PM, Carlsson M, Kovács SJ., Borgquist R, Revstedt J, Soderlind G, Arheden H, Heiberg E. "Vortex ring mixing as a measure of diastolic function of the human heart: Phantom validation and initial observations in healthy volunteers and patients with heart failure." Journal of Magnetic Resonance Imaging 2016 Jun 13;43(6):1386-97. Epub 2015 Dec 13.

  5. Arvidsson PM, Kovács SJ.,Toger J, Borgquist R, Heiberg E, Carlsson M, and Arheden H. "Vortex ring behavior provides the epigenetic blueprint for the human heart." NATURE Scientific Reports | 6:22021 | DOI: 10.1038/srep22021. 2016

  6. 2015

  7. Chung C, Shmuylovich L, Kovács SJ. "Letter to the Editor. Early detection of abnormal left ventricular relaxation in acute myocardial ischemia with a quadratic model Š by Morimont." Medical Engineering and Physics 2015 Aug 3;37(8):826. Epub 2015 Jun 3.

  8. Chung C, Shmuylovich L, Kovács SJ. "What global diastolic function is, what it is not, and how to measure it." American Journal of Physiology-Heart and Circulatory Physiology Invited Review Article, 2015, 309: H1392ŠH1406, 2015.

  9. Nappo R, Degiovanni A, Bolzani V, Sartori C, Di Giovine G, Cerini P, Fossaceca R, Kovács SJ.,Marino PN. "Quantitative Assessment of Atrial Conduit Function: A New Index of Diastolic Dysfunction." Clinical Research in Cardiology, 2016 Jan 30;105(1):17-28. Epub 2015 Jun 30.

  10. Kazui T, Watanabe Y, Kovács SJ.,Lawrance CP, Greenberg JW, Schuessler JB, Damiano RJ Jr. The Impact of Six Weeks of Atrial Fibrillation on Atrial and Ventricular Chamber Properties and Function in a Porcine Model. The Journal of Thoracic and Cardiovascular Surgery 2015

  11. Arvidsson PM, Carlsson M, Kovács SJ., Hakan Arheden H. Atrioventricular plane displacement is NOT the sole mechanism of atrial and ventricular refill" Am J Physiol-Heart and Circulatory Physiology, Perspective 2015

  12. Rosaria Nappo, Anna Degiovanni, Virginia Bolzani, Chiara Sartori,Gabriella Di Giovine, Paolo Cerini, Rita Fossaceca, Kovács SJ,Paolo N. Marino. Quantitative Asessment of Atrial Conduit Function: A New Index of Diastolic Dysfunction. Clinical Research in Cardiology 2015 [Full Text]

  13. Kovács SJ. Diastolic Function in Heart Failure. Clinical Medicine Insights: Cardiology. 2015; 9(Suppl 1): 49Š55. Published online 2015 Apr 15. doi: 10.4137/CMC.S18743 [Full Text]

  14. Mossahebi S, Zhu S, Kovács SJ. Fractionating E-wave deceleration time into its stiffness and relaxation components distinguishes pseudonormal from normal filling. Circulation: Cardiovascular Imaging, 2015. [Full Text]

  15. 2014

  16. Zhu S, Morrell T, Apor A, Merkely B, Vago H, Toth A, Ghosh E, Kovács SJ. Diastolic Function Alteration Mechanisms in Physiologic vs. Pathologic Hypertrophy are Elucidated by Model-Based Doppler E-Wave Analysis. J Exercise Science & Fitness,12:2, 88Š95, 2014 . doi:10.1016/j.jesf.2014.10.001 [Full Text]

  17. Shmuylovich L, Chung CS, Kovács SJ. Kinematic Modeling of Left Ventricular Diastolic Function. Chapter 28 in Molecular, Cellular and Tissue Engineering (In Press) The Biomedical Engineering Handbook, Fourth Edition. ISBN-10: 1439825300, CRC Press.

  18. Zhu S, Morrell T, Apor A, Merkeley B, Vago H, Toth A, Ghosh E, Kovács SJ. Diastolic Function Alteration Mechanisms in Physiologic vs. Pathologic Hypertrophy are Elucidated by Model-Based Doppler E-Wave Analysis. J Exercise Science & Fitness, 2014 (In Press).

  19. Ghosh E, Caruthers SD, Kovács SJ. The E-wave generated intraventricular diastolic vortex to L-wave relation: model-based prediction with in-vivo validation. J Appl Physiol, 117: 3, 316-324, 2014.

  20. Mossahebi S, Zhu S, Chen H, Shmuylovich L, Ghosh E, Kovács SJ. Quantification of global diastolic function by kinematic modeling-based analysis of transmitral flow via the Parametrized Diastolic Filling formalism. J Vis Exp 91: e51471, 2014. [Full Text] [Video]

  21. Mossahebi S, Kovács SJ. Diastolic Function in Normal Sinus Rhythm vs. Chronic Atrial Fibrillation: Comparison by Fractionation of E-wave Deceleration Time into Stiffness and Relaxation Components. J AFIB 6(5): 13-19, 2014. [Full Text]

  22. Mossahebi S, Kovács SJ. The isovolumic relaxation to early rapid filling relation: Kinematic model based prediction with in-vivo validation. Physiol Rep, 2(3): e00258, 2014. [Full Text]

  23. Mossahebi S, Kovács SJ. Kinematic Modeling Based Decomposition of Transmitral Flow (Doppler E-wave) Deceleration Time into Stiffness and Relaxation Components. Cardiovascular Engineering & Technology, 5(1): 25-34, 2014. [Abstract]

  24. 2013

  25. Ghosh E, Kovács SJ. The Vortex Formation Time to Diastolic Function Relation: Assessment of Pseudonormalized vs. Normal Filling. Physiological Reports 1(6), 2013. [Full Text]

  26. Mossahebi S, Shmuylovich L, Kovács SJ. The Challenge of Chamber Stiffness Determination in Chronic Atrial Fibrillation vs. Normal Sinus Rhythm: Echocardiographic Prediction with Simultaneous Hemodynamic Validation. J AFIB 6(3): 46-51, 2013. [Full Text]

  27. Ghosh E, Kovács SJ. The quest for load-independent left ventricular chamber properties: Exploring the normalized pressure phase plane. Physiol Rep, 1(3): e00043, 2013. [Full Text]

  28. Hummel SL, Seymour EM, Brook RD, Sheth SS, Ghosh E, Zhu S, Weder AB, Kovács SJ, Kolias TJ. Low-Sodium DASH Diet Improves Diastolic Function and Ventricular-Arterial Coupling in Hypertensive Heart Failure with Preserved Ejection Fraction. Circulation: Heart Failure 2013. [Full Text]

  29. Apor A, Merkely B, Morrell T, Zhu S, Ghosh E, Vá H, Andrássy P, Kovács SJ. Diastolic Function in Olympic Athletes vs. Controls: Stiffness and Relaxation Based Echocardiographic Comparison. Journal of Exercise Science & Fitness. 11(1): 29-34, 2013. [Full Text]

  30. Ghosh E, Kovács SJ. Early Left Ventricular Diastolic Function Quantitation Using Directional Impedances. Annals BME. 41(6): 1269-1278, 2013. [Full Text]

  31. 2012

  32. Töger J, Kanski M, Carlsson M, Kovács SJ, Söderlind G, Arheden H, Heiberg E. Diastolic vortex ring formation in the human left ventricle: quantitative analysis using Lagrangian coherent structures and 4D cardiovascular magnetic resonance velocity mapping. J of Cardiovascular Magnetic Resonance 2012, 14:W30. [Full Text]

  33. Töger J, Kanski M, Carlsson M, Kovács SJ, Söderlind G, Arheden H, Heiberg E. Vortex ring formation in the left ventricle of the heart: Analysis by 4D flow MRI and Lagrangian Coherent Structures. Annals BME. 40(12): 2652-2662, 2012. [Full Text]

  34. Ghosh E, Kovács SJ. Quantitative Assessment of Left Ventricular Diastolic Function Via Longitudinal and Transverse Flow Impedances. Contributed Paper: 34th Annual International IEEE EMBS Conference Proceedings 2012:5595-5598, 2012. [Full Text]

  35. Ghosh E, Kovács SJ. Spatio-temporal attributes of left ventricular pressure decay rate during isovolumic relaxation. Am J Physiol Heart Circ Physiol. 302(5): H1094-1101, 2012. [Full Text]

  36. Mossahebi S, Kovács SJ. Kinematic Modeling-based Left Ventricular Diastatic (Passive) Chamber Stiffness Determination with In-Vivo Validation. Annals BME. 40(5): 987-995, 2012. [Full Text]

  37. 2011

  38. Lloyd CW, Shmuylovich L, Holland MR, Miller JG, Kovács SJ. The diastolic function to cyclic variation of myocardial ultrasonic backscatter relation: the influence of parametrized diastolic filling (PDF) formalism determined chamber properties. Ultrasound Med. Biol. 37(8): 1185-95, 2011. [Full Text]

  39. Mossahebi S, Shmuylovich L, Kovács SJ. The thermodynamics of diastole: kinematic modeling based derivation of the P-V loop to transmitral flow energy relation, with in-vivo validation. Am J Physiol Heart Circ Physiol. 300: H514-H521, 2011. [Full Text]

  40. Kovács SJ. How the (Pediatric) Heart Works When It Contracts: Application of Left Ventricular "Isovolumic Acceleration" as a load-Independent Index of Contractility. J Am Coll Cardiol. 57: 1108-1110, 2011. [Full Text]

  41. 2010

  42. Ghosh E, Shmuylovich L, Kovács SJ. Vortex formation time to left ventricular early, rapid filling relation: model based prediction with echocardiographic validation. J Appl Physiol. 109(6): 1812-1819, 2010. [Full Text]

  43. Zhang W, Shmuylovich L, Kovács SJ. The E-wave delayed relaxation pattern to LV pressure contour relation: model-based prediction with in vivo validation. Ultrasound Med. Biol. 36(3): 497-511, 2010. [Full Text]

  44. Shmuylovich L, Chung CS, Kovács SJ. Last word on point: Counterpoint: Left ventricular volume during diastasis is the physiological in vivo equilibrium volume and is related to diastolic suction. J Appl Physiol. 109(2): 615, 2010. [Full Text]

  45. Shmuylovich L, Chung CS, Kovács SJ. Point: Left ventricular volume during diastasis is the physiological in vivo equilibrium volume and is related to diastolic suction. J Appl Physiol. 109(2): 606-608, 2010. [Full Text]

  46. 2009

  47. Zhang W, Shmuylovich L, Kovács SJ. The Pressure Recovery Ratio: The Invasive Index of LV Relaxation During Filling. Model Model-based Prediction With in in-Vivo Validation. Conf Proc IEEE Eng Med Biol Soc. 2009:3940-3943, 2009. [Full Text]

  48. Shmuylovich L, Kovács SJ. Automated method for calculation of a load-independent index of isovolumic pressure decay from left ventricular pressure data. Conf Proc IEEE Eng Med Biol Soc. 2009:3031-3034, 2009. [Full Text]

  49. Ghosh E, Shmuylovich L, Kovács SJ. Determination of early diastolic LV vortex formation time (T*) via the PDF formalism: a kinematic model of filling. Conf Proc IEEE Eng Med Biol Soc. 2009:2883-2886, 2009. [Full Text]

  50. Zhang W, Kovács SJ. The Age Dependence of Left Ventricular Filling Efficiency. Ultrasound Med Biol. 35: 1076-1085, 2009. [Full Text]

  51. Appleton CP, Kovács SJ. The Role of Left Atrial Function in Diastolic Heart Failure. Circulation: Cardiovascular Imaging. 2009;2:6-9. [Full Text]

  52. 2008

  53. Shmuylovich L, Kovács SJ. Stiffness and relaxation components of the exponential and logistic time constants may be used to derive a load-independent index of isovolumic pressure decay. Am J Physiol Heart Circ Physiol. 295(6): H2551-9, 2008. [Full Text]

  54. Zhang W, Chung CS, Shmuylovich L, Kovács SJ. Last Word on Viewpoint: Is Left Ventricular Volume during Diastasis the Real Equilibrium Volume and What Is Its Relationship to Diastolic Suction? J Appl Physiol, 105: 1019, 2008. [Full Text]

  55. Zhang W, Chung CS, Shmuylovich L, Kovács SJ. Viewpoint: Is Left Ventricular Volume During Diastasis the Real Equilibrium Volume and, What is its Relationship to Diastolic Suction? J Appl Physiol, 105: 1012-1014, 2008. [Full Text]

  56. Kovács SJ, Shmuylovich L, Zhang W. Imaging the motion of the heart with echocardiography: advanced technology provides deeper insights into physiology and diastolic function. MedicaMundi. 52: 31-36, 2008. [Full Text]

  57. Chung CS, Kovács SJ. The physical determinants of left ventricular isovolumic pressure decline: Model-based prediction with in-vivo validation. Am J Physiol Heart Circ Physiol. 2008;294:H1589-H1596. [Full Text]

  58. Riordan MM, Weiss EP, Meyer TE, Ehsani AA, Racette SB, Villareal DT, Fontana L, Holloszy JO, and Kovács SJ. The Effects of Caloric Restriction- and Exercise-Induced Weight Loss on Left Ventricular Diastolic Function. Am J Physiol Heart Circ Physiol. 2008;294:H1174-82. [Abstract] [Full Text]

  59. Riordan MM, Kovács SJ. Elucidation of spatially distinct compensatory mechanisms in diastole: radial compensation for impaired longitudinal filling in left ventricular hypertrophy. J Appl Physiol. 2008;104:513-520. [Full Text]

  60. Zhang W, Kovács SJ. The Diastatic Pressure-Volume Relationship Is Not the Same as the End-Diastolic Pressure-Volume Relationship. Am J Physiol.294: 2750-2760, 2008. [Full Text]

  61. Boskovski M, Shmuylovich L, Kovács SJ. Transmitral Flow Velocity-Contour Variation After Premature Ventricular Contractions: A Novel Test of the Load-Independent Index of Diastolic Filling. Ultrasound Med Biol. 34(12): 1901-1908, 2008. [Abstract]

  62. 2007

  63. Zhang W, Chung CS, Riordan MM, Wu Y, Shmuylovich L, Kovács SJ. The Kinematic Filling Efficiency Index of the Left Ventricle: Contrasting Normal vs. Diabetic Physiology. Ultrasound Med. Biol., 2007;33:842-850. [Full Text]

  64. Shmuylovich L, Kovács SJ. E-wave Deceleration Time May Not Provide an Accurate Determination of Left Ventricular Chamber Stiffness if Left Ventricular Relaxation/Viscoelasticity is Unknown. Am J Physiol Heart Circ Physiol. 292: H2712-H2720, 2007. [Full Text]

  65. Riordan MM, Kovács SJ. Absence of Diastolic Mitral Annular Oscillations is a Marker for Relaxation-related Diastolic Dysfunction. Am J Physiol Heart Circ Physiol. 2007;292:H2952-H2958. [Full Text]

  66. Riordan MM, Kovács SJ. Stiffness and Relaxation-based Quantitation of Radial Left Ventricular Oscillations: Elucidation of Regional Diastolic Function Mechanisms. J Appl Physiol. 2007;102:1862-1870. [Full Text]

  67. Chung CS, Kovács SJ. Pressure Phase-Plane Based Determination of the Onset of Left Ventricular Relaxation. Cardiovasc Eng. 7:162-171, 2007. [Abstract]

  68. 2006

  69. Riordan MM, Kovács SJ. Quantitation of Mitral Annular Oscillations and Longitudinal "Ringing" of the Left Ventricle: A New Window into Longitudinal Diastolic Function. J Appl Physiol 2006 Jan;100:112 - 119.[Full Text]

  70. Chung CS,  Kovács SJ. Consequences of Increasing Heart Rate on Deceleration Time, Velocity Time Integral, and E/A.  American Journal of Cardiology. 2006;97:130-136.        [Full Text]

  71. Meyer TE,  Kovács SJ,  Ehsani AA, Klein S, Holloszy JO, Fontana L. Long-term Caloric Restriction Slows Cardiac Aging in Humans. Journal of the American College of Cardiology, 2006; 47:398-402.[Full Text]

  72. Chung CS, Ajo DM, Kovács SJ. The Isovolumic Pressure to Early Rapid Filling Decay Rate Relation: Model-based Derivation and Validation Via Simultaneous Catheterization-Echocardiography. Journal of Applied Physiology 2006;100:528 - 534. [Full Text]

  73. Shmuylovich L, Kovács SJ. A load-independent index of diastolic filling: model-based derivation with in-vivo validation in control and diastolic dysfunction subjects. Journal of Applied Physiology, 2006;101: 92-101. [Full Text]

  74. Riordan MM, Kovács SJ. Relationship of pulmonary vein flow to left ventricular short-axis epicardial displacement in diastole: model-based prediction with in vivo validation. Am J Physiol Heart Circ Physiol. 2006;291(3):H1210-5. [Full Text]

  75. Wu Y and Kovács SJ. Frequency-based analysis of the early, rapid-filling pressure-flow relation elucidates diastolic efficiency mechanisms. Am J Physiol Heart Circ Physiol. 2006;291: H2942-H2949 [Full Text]

  76. Chung CS, Strunc A, Oliver R, Kovács SJ. Diastolic ventricular-vascular stiffness and relaxation relation: elucidation of coupling via pressure phase plane-derived indexes. Am J Physiol Heart Circ Physiol. 2006;291(5):H2415-23. [Full Text]

  77. Zhang W, Chung CS, Kovács SJ. Derivation and Left Ventricular Pressure Phase Plane Based Validation of a Time Dependent Isometric Crossbridge Attachment Model. Cardiovascular Engineering. 2006;6:132-144 . [Full Text]

  78. Wu Y, Yu Y and Kovács SJ. Contraction-Relaxation Coupling Mechanism Characterization in the Thermodynamic Phase-Plane: Normal vs. Impaired Left Ventricular Ejection Fraction. J App Physiol, 2006;102: 1367-1373. [Full Text]

  79. 2005

  80. Bowman AW, Kovács SJ. Prediction and assessment of the time-varying effective pulmonary vein area via cardiac MRI and Doppler echocardiography. Am J Physiol Heart Circ Physiol. 2005 Jan;288(1):H280-6.[Full Text]

  81. Waters EA, Bowman AW, Kovács SJ. MRI-determined left ventricular "crescent effect": a consequence of the slight deviation of contents of the pericardial sack from the constant-volume state.Am J Physiol Heart Circ Physiol. 2005 Feb;288(2):H848-53. [Full Text]

  82. Wu Y, Bowman AW, Kovács SJ. Frequency-Based Analysis of Diastolic Function: The Early Rapid Filling Phase Generates Negative Intraventricular Wave Reflections. Cardiovascular Engineering. 2005 Jan;5(1):1-12.[Abstract]

  83. Riordan MM, Chung CS, Kovács SJ. Diabetes and Diastolic Function: Stiffness and Relaxation from Transmitral Flow. Ultrasound Med. Biol. 2005;31:1589-1596.[Full Text]

  84. 2004

  85. Bowman AW, Kovács SJ. Left atrial conduit volume is generated by deviation from the constant-volume state of the left heart: a combined MRI-echocardiographic study. Am J Physiol Heart Circ Physiol. 2004 Jun;286(6):H2416-24.[Abstract] [Full Text]

  86. Karamanoglu M, Kovács SJ. Thermodynamic phase plane analysis of ventricular contraction and relaxation. Biomed Eng Online. 2004 Mar 5;3(1):6. .[Full Text]

  87. Rogers JH, Caruthers SD, Williams T, Rosa Lin SJ, Meyers D, Lanza GM, Kovács SJ, Lasala JM, Wickline SA. Clinical Utility of Rapid Prescreening Magnetic Resonance Angiography of Peripheral Vascular Disease Prior to Cardiac Catheterization. Journal of Cardiovascular Magnetic Resonance 6(1): 25-31. 2004.[Abstract] [Full Text]

  88. Bowman AW, Frihauf PA, Kovács SJ. Time-varying effective mitral valve area: prediction and validation using cardiac MRI and Doppler echocardiography in normal subjects. Am J Physiol Heart Circ Physiol. 2004 Oct;287(4):H1650-7. [Abstract] [Full Text]

  89. Meyer TE, Karamanoglu M, Ehsani AA, Kovács SJ. Left ventricular chamber stiffness at rest as a determinant of exercise capacity in heart failure subjects with decreased ejection fraction. J Appl Physiol. 2004 Nov;97(5):1667-72. [Full Text]

  90. Chung CS, Karamanoglu M, Kovács SJ. Duration of diastole and its phases as a function of heart rate during supine bicycle exercise. Am J Physiol Heart Circ Physiol. 2004 Nov;287(5):H2003-8. [Full Text]

  91. Bauman L, Chung CS, Karamanoglu M, Kovács SJ. The peak atrioventricular pressure gradient to transmitral flow relation: kinematic model prediction with in vivo validation. J Am Soc Echocardiogr. 2004 Aug;17(8):839-44.[Full Text]

  92. 2003

  93. Bowman AW, Kovács SJ. Assessment and consequences of the constant-volume attribute of the four-chambered heart. Am J Physiol Heart Circ Physiol. 2003 Nov;285(5):H2027-33.[Abstract] [Full Text]

  94. Oommen B, Karamanoglu M, Kovács SJ. Modeling Time Varying Elastance: The Meaning of "Load-Independence". Cardiovascular Engineering. 2003 Dec;3(4):123-130.[Abstract][Full Text]

  95. 2002

  96. Eucker SA, Lisauskas J, Courtois MR, Kovács SJ. Analysis of left ventricular hemodynamics in physiological hyperspace. Journal of Applied Physiology 92: 323-30, Jan 2002 [ Abstract] [Full Text]

  97. Sessoms MW, Lisauskas J, Kovács SJ. The left ventricular color M-mode Doppler flow propagation velocity V(p): in vivo comparison of alternative methods including physiologic implications., J Am Soc Echocardiogr 15, 339-348, 2002 [Abstract]

  98. Cook D, Sessoms M, Kovács SJ. The wall-thinning to transmitral flow-velocity relation: derivation with in vivo validation. Ultrasound in Medicine & Biology 28: 745-755, 2002 [Abstract] [Full Text]

  99. Oommen BS, Karamanoglu M, Kovács SJ. Can analysis of transmitral flow-velocity contours differentiate between alternative diastolic pressure-volume relations? Cardiovascular Engineering 2: 67-72,2002[ Abstract]

  100. 2001

  101. Eucker SA, Lisauskas JB, Singh J, Kovács SJ, Jr. Phase Plane Analysis of Left Ventricular Hemodynamics, Journal of Applied Physiology 90: 2238-2244, 2001. [Abstract] [Full Text]

  102. Lisauskas JB, Singh J, Courtois MR, Kovács SJ, Jr. The relation of the peak Doppler E-wave to peak mitral annulus velocity ratio to diastolic function. Ultrasound in Medicine & Biology 27: 499-507, 2001. [Abstract] [Full Text]

  103. Lisauskas JB, Singh J, Bowman AW, Kovács SJ, Jr. Chamber properties from transmitral flow: prediction of average and passive left ventricular diastolic stiffness. Journal of Applied Physiology 91: 154-162, July 2001 [Abstract] [Full Text]

  104. Dent CL, Bowman AW, Scott MJ, Allen JS, Lisauskas JB, Janif M, Wickline SA, Kovács SJ, Jr. Echocardiographic characterization of fundamental mechanisms of abnormal diastolic filling in diabetic rats with a parameterized diastolic filling formalism. J Am Soc Echocardiogr. 14(12):1166-72, Dec. 2001. [Full Text]

  105. Kovács SJ, Jr., McQueen DM, Peskin CS. Modelling cardiac fluid dynamics and diastolic function. Phil. Trans. R. Soc. Lond. A 359: 1299-1314, 2001.

  106. 2000

  107. Kovács SJ, Jr., Meisner JS, Yellin EL. Modeling of diastole. Cardiol Clin 18(3):459-87, Aug. 2000. [Abstract]

  108. Courtois M, Ludbrook PA, Kovács SJ., Jr. Unsolved problems in diastole.Cardiol Clin 18(3):653-67, Aug. 2000. [Abstract]

  109. 1999

  110. Hofman MBM, Henson RE, Kovács SJ, Jr., Fischer SE, Lauffer RB, Adzamli K, De Becker J, Wickline SA, Lorenz CH. Blood Pool Agent Strongly Improves 3D Magnetic Resonance Coronary Angiography Using an Inversion Pre-Pulse. Magnetic Resonance in Medicine, 41, 360-367, 1999.

  111. Rich MW, Stitziel NO, Kovács SJ, Jr. Prognostic Value of Diastolic Filling Parameters Derived Using Novel Image Processing Technique in Patients >= 70 Years of Age with Congestive Heart Failure. American Journal of Cardiology, 84, 82-86, 1999. [Full Text]

  112. 1998

  113. Hall AF, Nudelman SP, Kovács SJ, Jr. Evaluation of Model-Based Processing Algorithms for Averaged Transmitral Spectral Doppler Images. Ultrasound in Medicine & Biology, 24:1, 55-66, 1998. [Abstract] [Full Text]

  114. Hall AF, Nudelman SP, Kovács SJ, Jr. Beat Averaging Alternatives for Transmitral Doppler Flow Velocity Images. Ultrasound in Medicine & Biology, 24:7, 971-79, 1998. [Abstract] [Full Text]

  115. 1997

  116. McGuire AM, Hagley MT, Hall AF, Kovács SJ, Jr. Relationship of the Fourth Heart Sound to Atrial Systolic Transmitral Flow Deceleration. Am. J. Physiol. 272 (Heart Circ. Physiol. 41) (Modeling in Physiology), H1527-H1536, 1997. [Abstract]

  117. Kovács SJ, Jr., Rosado J, Manson-McGuire AL, Hall AF. Can Transmitral Doppler E-waves Differentiate Hypertensive Hearts From Normal?. Hypertension, 30, 788-795,1997. [Abstract] [Full Text]

  118. Kovács SJ, Jr., Setser R, Hall AF. Left Ventricular Chamber Stiffness from Model-Based Image Processing of Transmitral Doppler E-waves. Coronary Artery Disease, 8, 179-187, 1997. [Abstract]

  119. Hall AF, Bettlach J, Nudelman SP, Kovács SJ, Jr. Echo-Machine Imposed Limit on Transmitral Spectral Doppler Velocity-Profile Analysis. Ultrasound in Medicine & Biology, 23:8, 1225-1235, 1997. [Abstract] [Full Text]

  120. 1996

  121. Hall AF, Bettlach JA, Nudelman SP, Kovács SJ, Jr. Manufacturer and Machine Setting Based Variation of Parameters Resulting from Model-based Image Processing of Echocardiographic Transmitral Doppler Velocity Profiles. 1996 IEEE Ultrasonics Symposium, 1205-1210, 1996

  122. 1995

  123. Courtois MR, Kovács SJ, Jr., Tiefenbrunn AJ, Ludbrook PA. Anatomically and physiologically based reference level for measurement of intracardiac pressures. Circulation, 92, 1994-2000, 1995. [Abstract] [Full Text]

  124. Nudelman SP, Hall AF, Kovács SJ, Jr. Comparison of diastolic filling models and their fit to transmitral doppler contours. , Ultrasound in Medicine & Biology, 21:8, 989-999, 1995. [Abstract]

  125. Manson AL. Nudelman SP, Hagley MT, Hall AF, Kovács SJ, Jr. Relationship of the Third Heart Sound to Transmitral Flow Velocity Deceleration. Circulation, 92, 388-394, 1995. [Abstract] [Full Text]

  126. 1994

  127. Hall AF, Kovács SJ, Jr. Automated method for characterization of diastolic transmitral Doppler velocity contours: Early rapid filling. Ultrasound in Medicine & Biology, 20, 107-116, 1994. [Abstract]

  128. Hall AF, Aronovitz JA, Nudelman SP, Kovács SJ., Jr. Automated method for characterization of diastolic transmitral Doppler velocity contours: Late atrial filling. Ultrasound in Medicine & Biology, 20, 859-869, 1994. [Abstract]

  129. 1993

  130. Nudelman S, Hall AF, Kovács SJ, Jr. Response of blood flow entering the heart to dissynchronous ventricular recoil. J. Mathematical & Comput. Modeling, 17:8; 23-29, 1993.

  131. Prewitt D, Wickline S A, Kovács SJ, Jr. Characterization of abnormal left ventricular filling in hyper-trophic hearts, using a novel kinematic model. JACC, 21:2(Suppl A), 417A, 1993.

  132. Hall AF, Kovács SJ Jr. Processing parameter effects on the robustness of the solution to the "Inverse Problem" of diastole from Doppler echocardiographic data. 15th Annual International Conference, IEEE Engineering in Medicine & Biology Society, I385-387, 1993.

  133. Lakshminarayan K, Hall AF, Kovács SJ, Jr. Doppler echo determination of mitral valvular resistance to inertiance ratio. 15th Ann. Int. Conf., IEEE Engineering in Medicine & Biology Society, I551-553, 1993.

  134. 1992

  135. Hall AF, Kovács SJ, Jr. Automated quantification of diastolic filling parameters from cardiac Doppler ultrasound. IEEE Ultrasonics Symposium Proceedings,1125-1128, 1992.

  136. Kovács SJ, Jr., Hall AF. Echocardiographic Doppler velocity contour computation from acoustic signal. Proceedings of the 14th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 455-459, 1992.

  137. Gazula S, Hall AF, Kovács SJ, Jr. Contour extraction of Doppler velocity profiles using neural networks. Proceedings of Computers in Cardiology, IEEE Computer Society Press, 543-546, 1992.

  138. 1990

  139. Courtois MR, Kovács SJ, Jr., Ludbrook PA. Physiologic early diastolic pressure gradient is lost during acute myocardial ischemia. Circulation, 81, 1688-1696, 1990. [Abstract]

  140. Kovács SJ, Jr. Can Left Ventricular End Diastolic Pressure Be Determined By Doppler Echocardiography? Journal of the American College of Cardiology , 15(Suppl), 93A, 1990.

  141. 1989

  142. Courtois MR, Kovács SJ, Jr., Ludbrook PA. Loss of early diastolic intraventricular pressure gradient during acute myocardial ischemia. Journal of the American College of Cardiology, 13, 1218, 1989.

  143. 1988

  144. Courtois MR, Kovács SJ, Jr., Ludbrook PA. Transmitral pressure-flow velocity relation. Importance of regional pressure gradients in the left ventricle during diastole. Circulation, 78, 661-671, 1988. [Abstract]

  145. Kovács SJ, Jr. New insights into diastolic mechanics via the PDF formalism. Proceedings of the International Conference of the Cardiovascular System Dynamics Society, Halifax, Nova Scotia, 1988.

  146. 1987

  147. Kovács SJ, Jr., Barzilai B, Perez J. Evaluation of diastolic function with Doppler echocardiography: the PDF formalism. American J.of Physiology, 252, H178-H187, 1987. [Abstract]

  148. Courtois MR, Kovács SJ, Jr., Ludbrook PA. The diastolic atrioventricular relationship is a function of the site of pressure measurement in the left ventricle. Circulation, 76:IV, 426, 1987.

  149. Kovács SJ, Jr. The PDF formalism as a paradigm for diastolic mechanics. Proceedings of the Sixth International Conference on Mathematical Modeling, St. Louis, MO, 1987.

  150. 1986

  151. Kovács SJ, Jr. The duration of the QT interval as a function of heart rate: reply & evidence that a prediction stemming from first principles is validated by observation. American Heart Journal, 112, 1355-1366, 1986. [Abstract]

  152. 1985

  153. Kovács SJ, Jr. The duration of the QT interval as a function of heart rate: a derivation based on physical principles and a comparison to measured values. American Heart Journal, 110, 872-878, 1985.

  154. Kovács SJ, Jr. Quantitation of diastolic function using Doppler echocardiography: theoretical foundations of a new clinically useful formalism. Proceedings of 4th European Conference on Mechanocardiography, Budapest, 1985.